Twój Nauczyciel - Rozwiązywanie zadań
Roberta, Wiesława Niedziela 7. Czerwca 2020r
linki sponsorowane, reklamy
Matura 2019 - zadanie 30 - Statystyka

Ze zbioru liczb \(\{1, 2, 3, 4, 5\}\) losujemy dwa razy po jednej liczbie ze zwracaniem. Oblicz prawdopodobieństwo zdarzenia \(A\) polegającego na wylosowaniu liczb, których iloczyn jest liczbą nieparzystą.

ROZWIĄZANIE:

Stopień 1. Ustalenie liczby zdarzeń elementarnych.
Korzystając z reguły mnożenia możemy stwierdzić, że wszystkich par jakie możemy wylosować będziemy mieć dokładnie: \(5\cdot5=25\). W związku z tym \(Ω=25\).

Stopień 2. Obliczenie liczby zdarzeń sprzyjających.
Zdarzeniem sprzyjającym jest wylosowanie takich liczb, których iloczyn da liczbę nieparzystą. Przykładowo więc wylosowanie \((3;5)\) jest zdarzeniem sprzyjającym, bo \(3\cdot5=15\), ale już \((3;4)\) zdarzeniem sprzyjającym nie będzie, bo \(3\cdot4=12\).

Stopień 3. Obliczenie prawdopodobieństwa.
Skoro mamy \(9\) zdarzeń sprzyjających, a wszystkich zdarzeń elementarnych jest \(25\), to prawdopodobieństwo wylosowania liczb spełniających warunki zadania będzie równe:
$$P(A)=\frac{9}{25}$$

ODPOWIEDŹ:
\(P(A)=\frac{9}{25}\)
linki sponsorowane, reklamy
ANAUK.NET, jest nazwą zastrzeżoną (C) 2000. Informacje zawarte na naszych stronach WWW mają charakter dydaktyczno - poglądowy i nie mogą stanowić podstawy do zaniechania kontynuacji nauki w publicznych placówkach oświatowych. Jakkolwiek zespół redakcyjny dokłada wszelkich starań, aby informacje tu zawarte były rzetelne i pochodziły z wiarygodnych źródeł, nie ponosi żadnej odpowiedzialności za ich stosowanie w praktyce.
Udostępnij
Facebook
PetroAstro