Twój Nauczyciel - Rozwiązywanie zadań
Leona, Ludomiła Czwartek 20. Lutego 2020r
linki sponsorowane, reklamy
Matura 2017 - zadanie 32 - Geometria

Dane są punkty \(A=(-4,0)\) i \(M=(2,9)\) oraz prosta \(k\) o równaniu \(y=-2x+10\). Wierzchołek \(B\) trójkąta \(ABC\) to punkt przecięcia prostej \(k\) z osią \(Ox\) układu współrzędnych, a wierzchołek \(C\) jest punktem przecięcia prostej \(k\) z prostą \(AM\). Oblicz pole trójkąta \(ABC\).

ROZWIĄZANIE:

Stopień 1. Sporządzenie rysunku poglądowego.
Zróbmy sobie prosty szkic tej całej sytuacji i zaznaczmy w układzie współrzędnych dane z treści zadania:

Musimy wyznaczyć współrzędne punktu \(B\) (potrzebne będą do wyznaczenia długości podstawy) oraz współrzędne punktu \(C\) (potrzebne do wyznaczenia wysokości trójkąta).

Stopień 2. Wyznaczenie współrzędnych punktu \(B\).
Wyznaczenie współrzędnych tego punktu jest stosunkowo dość proste, bo jest to tak naprawdę miejsce zerowe prostej \(k\) (tak wynika z treści zadania). Można więc powiedzieć, że \(B=(x;0)\) zatem podstawiając te współrzędne do prostej o równaniu \(y=-2x+10\) otrzymamy:
$$-2x+10=0 \\
-2x=-10 \\
x=5$$
To oznacza, że \(B=(5;0)\).

Stopień 3. Wyznaczenie równania prostej przechodzącej przez punkty \(A\) oraz \(M\).
Skoro znamy współrzędne obydwu tych punktów to możemy skorzystać ze wzoru na równanie prostej albo też zbudować prosty układ równań. Szybciej będzie chyba skorzystać ze wzoru:
$$(y-y_{A})(x_{M}-x_{A})-(y_{M}-y_{A})(x-x_{A})=0 \\
(y-0)(2-(-4))-(9-0)(x-(-4))=0 \\
(y-0)(2+4)-9\cdot(x+4)=0 \\
(y-0)\cdot6-9\cdot(x+4)=0 \\
6y-9x-36=0 \\
6y=9x+36 \quad\bigg/:6 \\
y=\frac{3}{2}x+6$$

Stopień 4. Wyznaczenie współrzędnych punktu \(C\).
Stworzymy układ równań składających się z dwóch prostych, których miejscem przecięcia się są właśnie współrzędne punktu \(C\).
\begin{cases}
y=-2x+10 \\
y=\frac{3}{2}x+6
\end{cases}

Korzystając z metody podstawiania otrzymujemy:
$$-2x+10=\frac{3}{2}x+6 \quad\bigg/\cdot2 \\
-4x+20=3x+12 \\
-7x=-8 \\
x=\frac{8}{7}$$
Współrzędną \(y\) obliczmy podstawiając wartość \(x=\frac{8}{7}\) do jednego z równań:
$$y=-2\cdot\frac{8}{7}+10 \\
y=\frac{-16}{7}+10 \\
y=\frac{-16}{7}+\frac{70}{7} \\
y=\frac{54}{7}$$
Mamy zatem: \(C=\left(\frac{8}{7};\frac{54}{7}\right)\).

Stopień 5. Obliczenie pola trójkąta.
Do obliczenia pola trójkąta potrzebujemy jeszcze poznać długości podstawy trójkąta i wysokości.
• Długość podstawy trójkąta: \(|AB|=5+4=9\) (wynika to bezpośrednio z rysunku - pięć jednostek z punktu \(A\) do środka układu współrzędnych plus cztery jednostki ze środka układu współrzędnych do punktu \(B\)).
• Wysokość trójkąta to tak naprawdę współrzędna igrekowa punktu \(C\), czyli \(H=\frac{54}{7}\).

Pole trójkąta jest więc równe:
$$P=\frac{1}{2}\cdot|AB|\cdot H \\
P=\frac{1}{2}\cdot9\cdot\frac{54}{7} \\
P=\frac{1}{2}\cdot\frac{486}{7} \\
P=\frac{243}{7}=34\frac{5}{7}$$

ODPOWIEDŹ:
\(P=34\frac{5}{7}\)
linki sponsorowane, reklamy
ANAUK.NET, jest nazwą zastrzeżoną (C) 2000. Informacje zawarte na naszych stronach WWW mają charakter dydaktyczno - poglądowy i nie mogą stanowić podstawy do zaniechania kontynuacji nauki w publicznych placówkach oświatowych. Jakkolwiek zespół redakcyjny dokłada wszelkich starań, aby informacje tu zawarte były rzetelne i pochodziły z wiarygodnych źródeł, nie ponosi żadnej odpowiedzialności za ich stosowanie w praktyce.
Udostępnij
Facebook
PetroAstro